Индивидуальные летательные аппараты будущего. Ховербайк и реактивный ранец: топ необычных летательных аппаратов

Мечта о покорении воздушного пространства человеком отображается в легендах и преданиях практически всех народов населяющих Землю. Первые документальные свидетельства попыток человека поднять в воздух летательный аппарат относятся к первому тысячелетию до нашей эры. Тысячи лет попыток, труда и размышлений привело к полноценному воздухоплаванию только в конце 18 века, вернее к его развитию. Сначала появились монгольфьер, а следом и шарльер. Это два вида летательного аппарата легче воздуха — аэростата, в дальнейшем развитие аэростатной техники привело к созданию — дирижаблей. А на смену этим воздушным левиафанам пришли и аппараты тяжелее воздуха.

Примерно в 400 году до н. э. в Китае массово стали применяться воздушные змеи не только для развлечения, но и в сугубо военных целей, в качестве средства сигнализации. Этот аппарат уже можно охарактеризовать как устройство тяжелее воздуха, имеющее жесткую конструкцию и использующее для поддержания в воздухе аэродинамическую подъемную силу набегающего потока за счет струйных воздушных течений.

Классификация летательных аппаратов

Летательный аппарат — это какое-либо техническое устройство, которое предназначается для полетов в воздушном или космическом пространстве. В общей классификации различают аппараты легче воздуха, тяжелее воздуха и космические. В последнее время все более широко развивается направления конструирования смежных аппаратов, особенно создания гибрида воздушно — космического аппарата.

ЛА классифицироваться могут и иначе, например по следующим признакам:

  • по принципу действия (полета);
  • по принципу управления;
  • по предназначению и сферам применения;
  • по типу двигателей, установленных на ЛА;
  • по конструктивным особенностям, касающимся фюзеляжа, крыльев, оперения и шасси.

Кратко о летательных аппаратах.

1. воздухоплавательные ЛА. Считаются летательные аппараты легче воздуха. Воздушная оболочка наполнена легким газом. К ним относятся дирижабли, аэростаты и гибридные ЛА. Вся конструкция данного типа аппаратов всецело остается тяжелее воздуха, но из за разности плотностей газовых масс в и вне оболочки, создается разность давлений и как итог — выталкивающая сила, так называемая сила Архимеда.

2. ЛА, использующие аэродинамическую подъемную силу. Данный тип аппаратов считается уже тяжелее воздуха. Подъемная сила у них создается уже за счет геометрических поверхностей — крыльев. Крылья начинают поддерживать ЛА в воздушной среде только после того как вокруг их поверхностей начинают образовываться воздушные потоки. Таким образом крылья начинают работать после достижения ЛА определенной минимальной скорости «срабатывания» крыльев. На них начинает образовываться подъемная сила. Поэтому, например, чтобы подняться самолету в воздух или опуститься из него на землю, нужен пробег.

  • Планеры, самолеты, экранолеты и крылатые ракеты - это аппараты, у которых подъемная сила образуется при обтекании крыла;
  • Вертолеты и им подобные агрегаты, у них подъемная сила образуется за счет обтекания лопастей несущего винта;
  • ЛА, имеющие несущий корпус, созданный по схеме «летающее крыло»;
  • Гибридные - это аппараты вертикального взлета и посадки, как самолеты, так и винтокрылы, а также устройства совмещающие качества аэродинамических и космических ЛА;
  • Аппараты на динамической воздушной подушке типа экраноплан;

3. ко смические ЛА. Эти аппараты созданные специально для работы в безвоздушном пространстве с ничтожной гравитацией, а так же для преодоления силы притяжения небесных тел, для выхода в космическое пространство. К их числу относятся спутники, космические корабли, орбитальные станции, ракеты. Перемещение и подъемная сила создается за счет реактивной тяги, путем отбрасывания части массы аппарата. Рабочее тело так же образуется благодаря преобразованию внутренней массы аппарата, которая до начала полета еще состоит из окислителя и топлива.

Самые распространенные летательные аппараты - это самолеты. При классификации они подразделяются по многим признакам:

На втором месте по распространенности находятся вертолеты. Они также классифицируются по разным признакам например, по количеству и расположению несущих винтов:

  • имеющие одновинтовую схему, которая предполагает наличие дополнительного рулевого винта;
  • соосная схема - когда два несущих винта находятся на одной оси друг над другом и вращаются в разные стороны;
  • продольная - это когда несущие винты находятся на оси движения друг за другом;
  • поперечная - винты располагаются по бокам от фюзеляжа вертолета.

1,5 — поперечная схема, 2 — продольная схема, 3 — одновинтовая схема, 4 — соосная схема

Кроме того вертолеты можно классифицировать по назначению:

  • для пассажирских перевозок;
  • для боевого применения;
  • для применения в качестве транспортных средств при перевозке грузов различного назначения;
  • для различных сельскохозяйственных нужд;
  • для потребностей медицинского обеспечения и поисково-спасательных работ;
  • для применения в качестве воздушно-крановых устройств.

Краткая история авиации и воздухоплавания

Люди, серьезно занимающиеся историей создания летательных аппаратов, определяют, что какое-то устройство является ЛА, в первую очередь исходя из способности подобного агрегата поднять человека в воздух.

Самый первый из известных в истории полетов относится к 559 году нашей эры. В одном из государств на территории Китая приговоренного к смерти человека закрепили на воздушном змее и после запуска он смог пролететь над городскими стенами. Этот змей был скорее всего первым планером конструкции «несущее крыло».

В конце первого тысячелетия нашей эры на территории мусульманской Испании арабский ученый Аббас ибн Фарнас сконструировал и построил деревянный каркас с крыльями, который имел подобие органов управления полетом. Он смог взлететь на этом прообразе дельтаплана с вершины небольшого холма, продержаться в воздухе около десяти минут и вернуться к месту старта.

1475 год — первыми серьезными с научной точки зрения чертежами летательных аппаратов и парашюта считаются эскизы сделанные Леонардо да Винчи.

1783 год — совершен первый полет с людьми на воздушном аэростате Монгольфье, в этом же году в воздух поднимается аэростат с гелиевым наполнением шара и выполняется первый прыжок с парашютом.

1852 год — первый дирижабль с паровым двигателем выполнил успешный полет с возвращением в точку старта.

1853 год — в воздух поднялся планер с человеком на борту.

1881 — 1885 года — профессор Можайский получает патент, строит и испытывает самолет с паровыми двигателями.

1900 год — построен первый дирижабль Цеппелина с жесткой конструкцией.

1903 год — братья Райт выполняют первые реально управляемые полеты на самолетах с поршневым двигателем.

1905 год — создана Международная авиационная федерация (ФАИ).

1909 год — созданный год назад Всероссийский аэроклуб вступает в ФАИ.

1910 год — с водной поверхности поднялся первый гидросамолет, в 1915 году русский конструктор Григорович дает старт летающей лодке М-5.

1913 год — в России создан родоначальник бомбардировочной авиации «Илья Муромец».

1918 год, декабрь — организован ЦАГИ, который возглавил профессор Жуковский. Этот институт многие десятилетия будет определять направления развития российской и мировой авиационной техники.

1921 год — зарождается российская гражданская авиация, перевозящая пассажиров на самолетах «Илья Муромец».

1925 год — совершает полет АНТ-4, двухдвигательный цельнометаллический самолет-бомбардировщик.

1928 год — принят к серийному производству легендарный учебный самолет У-2, на котором будет подготовлено не одно поколение выдающихся советских летчиков.

В конце двадцатых годов был сконструирован и успешно испытан первый советский автожир — винтокрылый летательный аппарат.

Тридцатые годы прошлого века — это период различных мировых рекордов установленных на ЛА разного типа.

1946 год — в гражданской авиации появляются первые вертолеты.

В 1948 году рождается советская реактивная авиация — самолеты МиГ-15 и Ил-28, в этом же году появляется первый турбовинтовой самолет. Через год в серийное производство запускается МиГ-17.

Вплоть до середины сороковых годов XX столетия основным строительным материалом для ЛА были дерево и ткань. Но уже в первые годы второй мировой войны на смену деревянным конструкциям приходят цельнометаллические конструкции из дюралюминия.

Конструкция самолета

У всех летательных аппаратов есть схожие конструкционные элементы. Для воздушных аппаратов легче воздуха — одни, для аппаратов тяжелее воздуха — другие, для космических — третьи. Самая развитая и многочисленная ветка летательных аппаратов — это устройства тяжелее воздуха для полетов в атмосфере Земли. Для всех летательных аппаратов тяжелее воздуха есть основные общие черты, так как все аэродинамическое воздухоплавание и дальнейшие полеты в космос исходили с самой первой конструктивной схемы — схемы аэроплана, самолета по другому.

Конструкция такого ЛА как самолет, независимо от его типа или предназначения, имеет ряд общих элементов, обязательных для того, чтобы это устройство могло летать. Классическая схема выглядит следующим образом.

Планер самолета.

Этим термином называют цельную конструкцию, состоящую из фюзеляжа, крыльев и хвостового оперения. На самом деле — это отдельные элементы, имеющие разные функции.

а) Фюзеляж - это основная силовая конструкция самолета, к которой крепятся крылья, хвостовое оперение, двигатели и взлетно-посадочные устройства.

Корпус фюзеляжа собранный по классической схеме состоит из:
— носовой части;
— центральной или несущей части;
— хвостовой части.

В носовой части этой конструкции, как правило, располагается радиолокационное и радиоэлектронное самолетное оборудование и кабина экипажа.

Центральная часть несет основную силовую нагрузку, к ней крепятся крылья самолета. Кроме того, в ней располагаются основные топливные баки, проложены центральные электрические, топливные, гидравлические и механические магистрали. В зависимости от предназначения ЛА внутри центральной части фюзеляжа могут располагаться салон для перевозки пассажиров, транспортный отсек для размещения перевозимых грузов или отсек для размещения бомбового и ракетного вооружения. Возможны также варианты для топливозаправщиков, самолетов разведчиков или других специальных ЛА.

Хвостовая часть имеет также мощную силовую конструкцию, так как она предназначена для крепления к ней хвостового оперения. В некоторых модификациях самолетов на ней располагаются двигатели, а у бомбардировщиков типа ИЛ-28, ТУ-16 или ТУ-95 в этой части может располагаться кабина воздушного стрелка с пушками.

С целью уменьшения сопротивления трения фюзеляжа о набегающий воздушный поток выбирается оптимальная форма фюзеляжа с заостренными носом и хвостом.

Учитывая большие нагрузки на эту часть конструкции во время полета, он выполняется цельнометаллическим из металлических элементов по жесткой схеме. Основным материалом при изготовлении этих элементов является дюралюминий.

Основными элементами конструкции фюзеляжа являются:
— стрингеры — обеспечивающие жесткость в продольном отношении;
— лонжероны — обеспечивающие жесткость конструкции в поперечном отношении;
— шпангоуты — металлические элементы швеллерного типа, имеющие вид замкнутой рамы разного сечения, скрепляющие стрингеры и элероны в заданную форму фюзеляжа;
— внешняя обшивка — заранее заготовленные по форме фюзеляжа металлические листы из дюралюминия или композиционных материалов, которые крепятся на стрингеры, лонжероны или шпангоуты в зависимости от конструкции ЛА.

В зависимости от заданной конструкторами формы фюзеляж может создавать подъемную силу от двадцати до сорока процентов всей подъемной силы ЛА.

Подъемная сила, за счет которой ЛА тяжелее воздуха держится в атмосфере — это реально существующая физическая сила, образующаяся при обтекании набегающим воздушным потоком крыла, фюзеляжа и других элементов конструкции ЛА.

Подъемная сила прямо пропорциональна плотности среды, в которой образуется воздушный поток, квадрату скорости с которым движется ЛА и углу атаки, который образуют крыло и другие элементы относительно набегающего потока. Она также пропорциональна площади ЛА.

Самое простое и популярное объяснение возникновения подъемной силы это образование разницы давлений в нижней и верхней части поверхности.

б) Крыло самолета - это конструкция имеющая несущую поверхность для образования подъемной силы. В зависимости от типа самолета крыло может быть:
— прямым;
— стреловидным;
— треугольным;
— трапециевидным;
— с обратной стреловидностью;
— с переменной стреловидностью.

Крыло имеет центроплан, а также левую и правую полуплоскости, еще их можно называть консолями. В случае, если фюзеляж выполнен в виде несущей поверхности как у самолета типа Су-27, то имеются только левая и правая полуплоскости.

По количеству крыльев могут быть монопланы (это основная конструкция современных самолетов) и бипланы (примером может служить Ан-2) или трипланы.

По расположению относительно фюзеляжа крылья классифицируются как низкорасположенные, среднерасположенные, верхнерасположенные, «парасоль» (то есть крыло расположено над фюзеляжем). Основными силовыми элементами конструкции крыла являются лонжероны и нервюры, а также металлическая обшивка.

К крылу крепится механизация, обеспечивающая управление самолетом — это элероны с триммерами, а также имеющая отношение к взлетно-посадочным устройствам — это закрылки и предкрылки. Закрылки после их выпуска увеличивают площадь крыла, изменяют его форму, увеличивая возможный угол атаки на малой скорости и обеспечивают увеличение подъемной силы на режимах взлета и посадки. Предкрылки — это устройства для выравнивания воздушного потока и недопущения завихрений и срыва струи на больших углах атаки и малых скоростях. Кроме того, на крыле могут интерцепторы-элероны — для улучшения управляемости ЛА и интерцепторы-спойлеры — как дополнительная механизация уменьшающая подъемную силу и тормозящая ЛА в полете.

Внутри крыла могут размещаться топливные баки, например как у самолета МиГ-25. В законцовках крыла располагаются сигнальные огни.

в) Хвостовое оперение.

К хвостовой части фюзеляжа самолета крепятся два горизонтальных стабилизатора — это горизонтальное оперение и вертикальный киль — это вертикальное оперение. Эти элементы конструкции ЛА обеспечивают стабилизацию самолета в полете. Конструктивно они выполнены также как и крылья, только имеют значительно меньший размер. К горизонтальным стабилизаторам крепятся рули высоты, а к килю — руль поворота.

Взлетно-посадочные устройства.

а) Шасси — основное устройство относящиеся к этой категории.

Стойка шасси. Задняя тележка

Шасси самолета — это специальные опоры предназначенные для взлета, посадки, руления и стоянки ЛА.

Конструкция их достаточно проста и включает стойку с амортизаторами или без них, систему опор и рычагов обеспечивающих устойчивое положение стойки в выпущенном положении и быструю уборку ее после взлета. Также имеются колеса, поплавки или лыжи в зависимости от типа самолета и взлетно-посадочной поверхности.

В зависимости от расположения на планере возможны различные схемы:
— шасси с передней стойкой (основная схема для современных самолетов);
— шасси с двумя основными стойками и хвостовой опорой (примером может служить Ли-2 и Ан-2, в настоящее время практически не применяется);
— велосипедное шасси (такое шасси установлено на самолете Як-28);
— шасси с передней стойкой и выпускающейся при посадке задней штангой с колесиком.

Самой распространенной схемой для современных самолетов является шасси с передней стойкой и двумя основными. На очень тяжелых машинах основные стойки имеют многоколесные тележки.

б) Тормозная система. Торможение самолета после посадки осуществляется с помощью тормозов в колесах, спойлеров-интерцептеров, тормозных парашютов и реверса двигателей.

Двигательные силовые установки.

Самолетные двигатели могут размещаться в фюзеляже, подвешены на крыльях с помощью пилонов или размещены в хвостовой части самолета.

Конструктивные особенности других летательных аппаратов

  1. Вертолет. Способность взлетать вертикально и вертеться вокруг своей оси, зависать на месте и летать боком и задом. Все это характеристики вертолета и все это обеспечивается благодаря подвижной плоскости, создающая подъемную силу — это винт, который имеет аэродинамическую плоскость. Винт постоянно находится в движении, не зависимо от того с какой скоростью и в каком направлении происходит полет непосредственно вертолета.
  2. Винтокрыл. Особенностью этого ЛА является то, что взлет аппарата осуществляется за счет несущего винта, а набор скорости и горизонтальный полет — за счет классически расположенного пропеллера, установленного на ТВД, как у самолета.
  3. Конвертоплан. Эту модель ЛА можно отнести к аппаратам с вертикальным взлетом и посадкой, которые обеспечиваются поворотными ТВД. Они закреплены на концах крыльев и после взлета поворачиваются в самолетное положение, в котором создается тяга для горизонтального полета. Подъемная сила обеспечивается крыльями.
  4. Автожир. Особенность данного ЛА заключается в том, что во время полета он опирается на воздушную массу за счет свободно вращающегося винта в режима авторотации. В данном случае винты заменяют собой статичное крыло. Но для поддержания полета необходимо постоянно вращать винт, а он вращается от набегающего воздушного потока, поэтому аппарата, не смотря на винт необходима минимальная скорость для полета.
  5. Самолет вертикального взлета и посадки. Взлетает и садится при нулевой горизонтальной скорости, используя тягу реактивных двигателей, которая направлена в вертикальном направлении. В мировой авиационной практике это такие самолеты как Харриер и Як-38.
  6. Экраноплан. Это аппарат способный передвигаться на большой скорости, используя при этом эффект аэродинамического экрана, который позволяет этому ЛА держаться на высоте нескольких метров над поверхностью. При этом площадь крыла у этого аппарата меньше, чем у аналогичного самолета. ЛА использующий этот принцип, но способный подниматься на высоту в несколько тысяч метров называется экранолет. Особенностью его конструкции является более широкие фюзеляж и крыло. Такой аппарат имеет большую грузоподъемность и дальность полета до тысячи километров.
  7. Планер, дельтаплан, параплан. Это ЛА тяжелее воздуха, как правило безмоторные, которые для полета используют подъемную силу за счет обтекания воздушным потоком крыла или несущей поверхности.
  8. Дирижабль. Это аппарат легче воздуха, использующий для управляемого движения двигатель с винтом. Он может быть с мягкой, полужесткой и жесткой оболочкой. В настоящее время используется в военных и специальных целях. Однако целый ряд преимуществ, таких как дешевизна, большая грузоподъемность и ряд других, дают повод к дискуссиям о возврате этого вида транспорта в реальный сектор экономики.

Человечество стремилось ввысь на протяжении столетий и тысячелетий, о попытках людей преодолеть земное тяготение сложены легенды, мифы, предания и сказки. Древние боги могли перемещаться в воздухе на своих колесницах, кому-то не требовались даже они. К самым известным «небесным пилотам» можно отнести Икара, а также Деда Мороза (он же Санта-Клаус).

Более реальные для истории примеры - Леонардо да Винчи, братья Монгольфье и другие инженеры, а также увлеченные своими идеями энтузиасты, такие как, например, американские братья Райт. С последних началась современная эпоха самолетостроения, именно они вывели некоторые фундаментальные основы, которые применяются до сих пор.

Как и в случае с автомобилями, эффективность летательных аппаратов со временем росла, и конструкторы получали больше возможностей для создания каких-то новых, часто революционных средств передвижения по воздуху. При достаточном финансировании и поддержке со стороны власть имущих (чаще - военных) удавалось воплотить в жизнь самые необычные проекты. Нередко это были неприспособленные к жизни устройства, которые могли летать лишь на бумаге. Другие все же отрывались от земли, но их производство оказывалось слишком дорогим. Существовали также иные ограничения, в том числе технического характера.

Мы решили перечислить некоторые как позабытые, так и перспективные летательные аппараты для персонального использования. Это не самолеты для перевозки большого количества пассажиров или объемных грузов, а индивидуальные средства передвижения, привлекающие своей необычностью и теоретически способные упростить жизнь человеку будущего.

HZ-1 Aerocycle (YHO-2) Персональный вертолет, разработанный компанией de Lackner Helicopters в середине 1950-х годов. Заказчиком аппарата выступали американские военные, которые намеревались обеспечить своих солдат удобным средством передвижения. «Аэроцикл» представлял собой платформу, снизу к которой крепились два вращающихся в разных направлениях винта (длина каждой лопасти - более 4,5 метра). В действие их приводил 4-цилиндровый двигатель мощностью 43 лошадиные силы, максимальная скорость полета агрегата - до 110 км/ч.

Испытаниями YHO-2 занимался профессиональный летчик Селмер Сандби, ставший добровольцем в этом деле. Наиболее продолжительный его полет длился 43 минуты, другие заканчивались через несколько секунд после взлета. Не обошлось и без инцидентов: несколько раз лопасти двух винтов соприкасались, что приводило к их деформации, а также потере контроля над аппаратом.
Предполагалось, что управлять YHO-2 сможет любой после 20-минутного инструктажа, однако Сандби сомневался в этом. Опасность несли огромные лопасти, которые могли напугать человека, даже несмотря на то, что положение пилота фиксировалось ремнями безопасности. Инженеры так и не смогли решить проблему с винтами, и в итоге проект был закрыт. Из 12 заказанных персональных вертолетов целым остался один - он выставлен в одном из американских музеев. Кстати, Селмер Сандби получил за свою службу и участие в испытаниях YHO-2 «Крест летных заслуг».
Реактивный ранец.

В 1950-х годах велась разработка еще одного перспективного индивидуального транспортного средства - реактивного ранца. Эта идея, фигурировавшая в научной фантастике еще в 1920-е, впоследствии нашла воплощение в комиксах и фильмах (например, «Ракетчик» 1991 года), однако до этого инженеры и конструкторы потратили немало сил на реализацию идеи сделать человека-ракету. Попытки не прекращаются до сих пор, но уровень развития технологий все еще не позволяет преодолеть некоторые ограничения. В частности, о длительном полете речи пока не идет, управляемость также оставляет желать лучшего. Имеются и вопросы касательно безопасности пилота.
«Первопроходец» среди ракетных ранцев отличался невероятной «прожорливостью»: на полет длительностью до 30 секунд требовалось 19 литров перекиси водорода (пероксида водорода). Пилот мог эффектно подпрыгнуть в воздух или пролететь сотню метров, однако на этом все достоинства аппарата заканчивались. Для обслуживания единственного ранца требовалась целая бригада специалистов, скорость его передвижения была относительно невысока, а для увеличения дальности полета был нужен бак, удержать который пилот бы не смог.
Военные, которые видели в весьма дорогостоящем проекте перспективу создания космических пехотинцев или летающего спецназа, оказались разочарованы.
Впоследствии появилась модернизированная версия аппарата - RB 2000 Rocket Belt. Ее разработку вели трое американцев: продавец страховок и предприниматель Брэд Баркер, бизнесмен Джо Райт и инженер Ларри Стенли. К сожалению, группа распалась: Стенли обвинил Баркера в растратах и последний скрылся вместе с образцом RB 2000. Позже последовал суд, однако Баркер отказался выплачивать $10 млн. Стенли схватил бывшего партнера и посадил его на восемь дней в ящик, за что в 2002 году после бегства страхового агента получил пожизненный срок (его сократили до восьми лет). После всех этих перипетий RB 2000 так и не был найден.
Avro Canada VZ-9 Avrocar.
В конце 1940-х произошел так называемый Розуэлльский инцидент, который, вероятно, и оказал влияние на умы канадских инженеров. Они приняли участие в разработке летательного аппарата вертикального взлета и посадки Avro Canada VZ-9 Avrocar. При взгляде на него на ум сразу приходит аналогия именно с летающими тарелками. На экспериментальный проект было потрачено как минимум три года и $10 млн. Всего было построено два экземпляра высокотехнологичного «пончика» с турбиной посередине.

Предполагалось, что Avrocar, использующий эффект Коанда (с 2012 года его эксплуатируют в Формуле-1), будет способен развивать высокую скорость. Будучи маневренным и имея достойную дальность полета, он в итоге превратится в «летающий джип». Диаметр «тарелки» с двумя кокпитами для пилотов составлял 5,5 метра, высота - менее метра, вес - 2,5 тонны. Максимальная скорость полета Avrocar, согласно замыслу конструкторов, должна была достигать 480 км/ч, высота полета - более 3 тыс. метров.

Второй по счету полноценный прототип не оправдал надежд его создателей: он смог разогнаться лишь до невпечатляющих 56 км/ч. Кроме того, аппарат вел себя в воздухе непредсказуемо, и об эффективном полете речи не шло. Также инженеры выяснили, что поднять Avrocar в воздух на сколь-нибудь значимую высоту не получится, а существующий образец рисковал застрять в высокой траве или мелком кустарнике.
Веловертолет AeroVelo Atlas
В прошлом году двое канадских инженеров получили премию Сикорского, учрежденную в 1980-м. Изначально ее размер составлял $10 тыс. В 2009-м выплаты увеличились до $250 тыс. Согласно правилам конкурса, летательный аппарат на мускульной тяге должен был подняться в воздух на высоту не менее трех метров, имея при этом хорошую устойчивость и управляемость.

Создатели AeroVelo Atlas смогли выполнить все поставленные задачи, представив по-своему футуристичное средство передвижения, достойное покорять небо планеты с низкой гравитацией. Несмотря на свои огромные размеры (ширина веловертолета составила 58 метров, а вес - всего 52 кг), достойный продолжатель идей да Винчи взлетел и даже в некотором смысле превзошел «конкурента» в лице Avrocar: высота его полета составила 3,3 метра, длительность - более минуты.

В пиковый момент пилот «Атласа» смог создать тягу в 1,5 лошадиной силы, которая потребовалась для достижения заданной высоты. Под конец полета тяга составила 0,8 лошадиной силы - педали крутил подготовленный спортсмен, профессиональный велосипедист.
Веловертолет заслуживает внимания как доказательство того, что при желании можно обойти многие препятствия и заставить летать даже то, что и в состоянии покоя не внушает доверия. Ховербайк Криса Мэллоя.
Кто-то вдохновляется историями об НЛО, а Крис Мэллой, вероятно, является поклонником «Звездных войн». Пока, к сожалению, это лишь идея, воплощенная частично: австралиец продолжает собирать средства на выпуск полностью рабочего прототипа летательного аппарата. Для этого ему потребуется $1,1 млн, а пока в продаже есть миниатюрные версии ховербайка: это дроны, за счет продаж которых Мэллой намерен частично профинансировать постройку своего детища.



Инженер считает, что его летательный аппарат лучше, чем существующие вертолеты (именно с ними он сравнивает ховербайк). Агрегат не требует продвинутых знаний в области пилотирования, так как основные задачи будет выполнять компьютер. Кроме того, устройство легче и дешевле.
Планируется, что аппарат оснастят баком на 30 литров топлива (60 литров - с дополнительными емкостями), расход составит 30 литров в час, или 0,5 литра в минуту. Ширина ховербайка достигает 1,3 метра, длина - 3 метра, чистый вес - 105 кг, максимальная взлетная масса - 270 кг. Агрегат сможет взлетать на высоту почти 3 км, а его скорость будет составлять более 250 км/ч. Звучит все это многообещающе, но пока малоправдоподобно.
Jetlev.
Полностью рабочий прототип аналога ракетного ранца на водной тяге был завершен в 2008 году. По словам его создателей, первый набросок будущего аппарата появился за восемь лет до этого. Промо, демонстрирующее возможности Jetlev, было размещено на YouTube в 2009 году, тогда же компания-разработчик объявила и стоимость первой массовой версии устройства - $139,5 тыс. С течением времени ранец на водной тяге заметно убавил в цене, которая снизилась для модели R200x до $68,5 тыс. Это стало возможно благодаря появившейся конкуренции.
В нашем списке это первый летательный аппарат, который действительно существует, работает и имеет определенную популярность. Он «привязан» к воде, однако это не умаляет его достоинств: максимальная скорость полета актуальной модели составляет 40 км/ч, высота - около 40 метров. При наличии достаточно протяженной реки пилот Jetlev смог бы преодолеть почти 50 км (другой вопрос - существует ли человек, способный выдержать такой путь).
Разработка не претендует на звание «серьезного» средства передвижения, однако даст почувствовать себя Джеймсом Бондом, в распоряжении которого оказался новый гаджет из исследовательского центра Британской секретной службы.
M400 Skycar.
Один из самых неоднозначных проектов, который в итоге может быть не реализован. Созданием летающего автомобиля уже не первое десятилетие занимается дизайнер Пол Моллер. В последние годы ему все сложнее привлекать внимание к своим так и не взлетевшим транспортным средствам. За все время изобретатель не смог добиться значимых и видимых результатов, но как минимум с 1997 года регулярно привлекает к себе внимание финансовых служб и контролирующих органов.
Вначале Моллера уличили в выпуске маркетинговых материалов, в которых он сообщал о том, что его автомобили будущего заполнят воздушное пространство в течение нескольких лет. Затем сомнения вызвали операции с ценными бумагами и возможный обман инвесторов, в результате чего желающих вкладывать деньги в бездонный проект становилось все меньше. Последнюю попытку канадец предпринял в конце 2013 года, но к январю 2014-го собрал менее $30 тыс. из требуемых $950 тыс.

Если верить дизайнеру, в настоящее время идет разработка модели M400X Skycar. Автомобиль, предназначенный для перевозки одного человека (водителя), на бумаге способен развивать скорость до 530 км/ч и взлетать на высоту 10 тыс. метров. В реальности же идея, скорее всего, так и останется идеей, а работа всей жизни Пола Моллера, которому в этом году исполнится 78 лет, завершится ничем.
Летающий мотоцикл G2.
В перспективе он обязательно полетит - об этом свидетельствуют испытания первой модели, проведенные в 2005-2006 годах. Пока же аппарат, который успел завоевать звание «самого быстрого в мире летающего мотоцикла», подойдет Безумному Максу, Бэтмену или Агенту 007. Благодаря двигателю от Suzuki GSX-R1000, транспортное средство способно развивать скорость более 200 км/ч, что доказано во время заездов по соляной пустыне в США. Способность покорять небо, по словам разработчика, летающий мотоцикл получит в ближайшие месяцы.

В качестве основы для летательного аппарата изобретатель не зря выбрал именно байк: по американскому законодательству его будет значительно легче зарегистрировать и использовать на дорогах.
Сейчас Дежё Молнар работает над тем, чтобы снизить вес G2 и приспособить двигатель, приводящий мотоцикл в движение, для взаимодействия с винтом. Именно тогда инженер и опубликует видео, на котором продемонстрирует все возможности создаваемого им транспортного средства.

Человечество стремилось ввысь на протяжении столетий и тысячелетий, о попытках людей преодолеть земное тяготение сложены легенды, мифы, предания и сказки. Древние боги могли перемещаться в воздухе на своих колесницах, кому-то не требовались даже они. К самым известным «небесным пилотам» можно отнести Икара, а также Деда Мороза (он же Санта-Клаус).

Более реальные для истории примеры - Леонардо да Винчи, братья Монгольфье и другие инженеры, а также увлеченные своими идеями энтузиасты, такие как, например, американские братья Райт. С последних началась современная эпоха самолетостроения, именно они вывели некоторые фундаментальные основы, которые применяются до сих пор.

Как и в случае с автомобилями, эффективность летательных аппаратов со временем росла, и конструкторы получали больше возможностей для создания каких-то новых, часто революционных средств передвижения по воздуху. При достаточном финансировании и поддержке со стороны власть имущих (чаще - военных) удавалось воплотить в жизнь самые необычные проекты. Нередко это были неприспособленные к жизни устройства, которые могли летать лишь на бумаге. Другие все же отрывались от земли, но их производство оказывалось слишком дорогим. Существовали также иные ограничения, в том числе технического характера.

Мы решили перечислить некоторые как позабытые, так и перспективные летательные аппараты для персонального использования. Это не самолеты для перевозки большого количества пассажиров или объемных грузов, а индивидуальные средства передвижения, привлекающие своей необычностью и теоретически способные упростить жизнь человеку будущего.

(Всего 30 фото + 10 видео)

Спонсор поста: Splitmart.ru - кондиционеры, климатическая техника : Интернет-магазин климатической техники СПЛИТМАРТ - SplitMart предлагает кондиционеры сплит системы инверторные и традиционные в огромном ассортиментеИсточник: onliner.by

HZ-1 Aerocycle (YHO-2)

1. HZ-1 Aerocycle (YHO-2) - персональный вертолет, разработанный компанией de Lackner Helicopters в середине 1950-х годов. Заказчиком аппарата выступали американские военные, которые намеревались обеспечить своих солдат удобным средством передвижения. «Аэроцикл» представлял собой платформу, снизу к которой крепились два вращающихся в разных направлениях винта (длина каждой лопасти - более 4,5 метра).

2. В действие их приводил 4-цилиндровый двигатель мощностью 43 лошадиные силы, максимальная скорость полета агрегата - до 110 км/ч.

3. Испытаниями YHO-2 занимался профессиональный летчик Селмер Сандби, ставший добровольцем в этом деле. Наиболее продолжительный его полет длился 43 минуты, другие заканчивались через несколько секунд после взлета. Не обошлось и без инцидентов: несколько раз лопасти двух винтов соприкасались, что приводило к их деформации, а также потере контроля над аппаратом.

4. Предполагалось, что управлять YHO-2 сможет любой после 20-минутного инструктажа, однако Сандби сомневался в этом. Опасность несли огромные лопасти, которые могли напугать человека, даже несмотря на то, что положение пилота фиксировалось ремнями безопасности. Инженеры так и не смогли решить проблему с винтами, и в итоге проект был закрыт. Из 12 заказанных персональных вертолетов целым остался один - он выставлен в одном из американских музеев. Кстати, Селмер Сандби получил за свою службу и участие в испытаниях YHO-2 «Крест летных заслуг».

Реактивный ранец

5. В 1950-х годах велась разработка еще одного перспективного индивидуального транспортного средства - реактивного ранца. Эта идея, фигурировавшая в научной фантастике еще в 1920-е, впоследствии нашла воплощение в комиксах и фильмах (например, «Ракетчик» 1991 года), однако до этого инженеры и конструкторы потратили немало сил на реализацию идеи сделать человека-ракету. Попытки не прекращаются до сих пор, но уровень развития технологий все еще не позволяет преодолеть некоторые ограничения. В частности, о длительном полете речи пока не идет, управляемость также оставляет желать лучшего. Имеются и вопросы касательно безопасности пилота

6. «Первопроходец» среди ракетных ранцев отличался невероятной «прожорливостью»: на полет длительностью до 30 секунд требовалось 19 литров перекиси водорода (пероксида водорода). Пилот мог эффектно подпрыгнуть в воздух или пролететь сотню метров, однако на этом все достоинства аппарата заканчивались. Для обслуживания единственного ранца требовалась целая бригада специалистов, скорость его передвижения была относительно невысока, а для увеличения дальности полета был нужен бак, удержать который пилот бы не смог.

7. Военные, которые видели в весьма дорогостоящем проекте перспективу создания космических пехотинцев или летающего спецназа, оказались разочарованы.

8. Впоследствии появилась модернизированная версия аппарата - RB 2000 Rocket Belt. Ее разработку вели трое американцев: продавец страховок и предприниматель Брэд Баркер, бизнесмен Джо Райт и инженер Ларри Стенли. К сожалению, группа распалась: Стенли обвинил Баркера в растратах и последний скрылся вместе с образцом RB 2000. Позже последовал суд, однако Баркер отказался выплачивать 10 млн долларов. Стенли схватил бывшего партнера и посадил его на восемь дней в ящик, за что в 2002 году после бегства страхового агента получил пожизненный срок (его сократили до восьми лет). После всех этих перипетий RB 2000 так и не был найден.

Avro Canada VZ-9 Avrocar

9. В конце 1940-х произошел так называемый Розуэлльский инцидент, который, вероятно, и оказал влияние на умы канадских инженеров. Они приняли участие в разработке летательного аппарата вертикального взлета и посадки Avro Canada VZ-9 Avrocar. При взгляде на него на ум сразу приходит аналогия именно с летающими тарелками. На экспериментальный проект было потрачено как минимум три года и 10 млн долларов. Всего было построено два экземпляра высокотехнологичного «пончика» с турбиной посередине.

10. Предполагалось, что Avrocar, использующий эффект Коанда (с 2012 года его эксплуатируют в «Формуле-1»), будет способен развивать высокую скорость. Будучи маневренным и имея достойную дальность полета, он в итоге превратится в «летающий джип». Диаметр «тарелки» с двумя кокпитами для пилотов составлял 5,5 метра, высота - менее метра, вес - 2,5 тонны. Максимальная скорость полета Avrocar, согласно замыслу конструкторов, должна была достигать 480 км/ч, высота полета - более 3 тыс. метров.

11. Второй по счету полноценный прототип не оправдал надежд его создателей: он смог разогнаться лишь до невпечатляющих 56 км/ч. Кроме того, аппарат вел себя в воздухе непредсказуемо, и об эффективном полете речи не шло. Также инженеры выяснили, что поднять Avrocar в воздух на сколь-нибудь значимую высоту не получится, а существующий образец рисковал застрять в высокой траве или мелком кустарнике.

Веловертолет AeroVelo Atlas

13. В 2013 году двое канадских инженеров получили премию Сикорского, учрежденную в 1980-м. Изначально ее размер составлял 10 тыс. долларов. В 2009-м выплаты увеличились до 250 тыс. долларов. Согласно правилам конкурса, летательный аппарат на мускульной тяге должен был подняться в воздух на высоту не менее трех метров, имея при этом хорошую устойчивость и управляемость.

14. Создатели AeroVelo Atlas смогли выполнить все поставленные задачи, представив по-своему футуристичное средство передвижения, достойное покорять небо планеты с низкой гравитацией. Несмотря на свои огромные размеры (ширина веловертолета составила 58 метров, а вес - всего 52 кг), достойный продолжатель идей да Винчи взлетел и даже в некотором смысле превзошел «конкурента» в лице Avrocar: высота его полета составила 3,3 метра, длительность - более минуты.

15. В пиковый момент пилот «Атласа» смог создать тягу в 1,5 лошадиной силы, которая потребовалась для достижения заданной высоты. Под конец полета тяга составила 0,8 лошадиной силы - педали крутил подготовленный спортсмен, профессиональный велосипедист.

Веловертолет заслуживает внимания как доказательство того, что при желании можно обойти многие препятствия и заставить летать даже то, что и в состоянии покоя не внушает доверия.

Ховербайк Криса Мэллоя

16. Кто-то вдохновляется историями об НЛО, а Крис Мэллой, вероятно, является поклонником «Звездных войн». Пока, к сожалению, это лишь идея, воплощенная частично: австралиец продолжает собирать средства на выпуск полностью рабочего прототипа летательного аппарата.

17. Для этого ему потребуется 1,1 млн долларов, а пока в продаже есть миниатюрные версии ховербайка: это дроны, за счет продаж которых Мэллой намерен частично профинансировать постройку своего детища.

18. Инженер считает, что его летательный аппарат лучше, чем существующие вертолеты (именно с ними он сравнивает ховербайк). Агрегат не требует продвинутых знаний в области пилотирования, так как основные задачи будет выполнять компьютер. Кроме того, устройство легче и дешевле.

19. Планируется, что аппарат оснастят баком на 30 литров топлива (60 литров - с дополнительными емкостями), расход составит 30 литров в час, или 0,5 литра в минуту. Ширина ховербайка достигает 1,3 метра, длина - 3 метра, чистый вес - 105 кг, максимальная взлетная масса - 270 кг.

20. Агрегат сможет взлетать на высоту почти 3 км, а его скорость будет составлять более 250 км/ч. Звучит все это многообещающе, но пока малоправдоподобно.

21. Полностью рабочий прототип аналога ракетного ранца на водной тяге был завершен в 2008 году. По словам его создателей, первый набросок будущего аппарата появился за восемь лет до этого. Промо, демонстрирующее возможности Jetlev, было размещено на YouTube в 2009 году, тогда же компания-разработчик объявила и стоимость первой массовой версии устройства - 139,5 тыс. долларов. С течением времени ранец на водной тяге заметно убавил в цене, которая снизилась для модели R200x до 68,5 тыс. долларов. Это стало возможно благодаря появившейся конкуренции.

22. В нашем списке это первый летательный аппарат, который действительно существует, работает и имеет определенную популярность. Он «привязан» к воде, однако это не умаляет его достоинств: максимальная скорость полета актуальной модели составляет 40 км/ч, высота - около 40 метров. При наличии достаточно протяженной реки пилот Jetlev смог бы преодолеть почти 50 км (другой вопрос - существует ли человек, способный выдержать такой путь).

23. Разработка не претендует на звание «серьезного» средства передвижения, однако даст почувствовать себя Джеймсом Бондом, в распоряжении которого оказался новый гаджет из исследовательского центра Британской секретной службы.

M400 Skycar

24. Один из самых неоднозначных проектов, который в итоге может быть не реализован. Созданием летающего автомобиля уже не первое десятилетие занимается дизайнер Пол Моллер. В последние годы ему все сложнее привлекать внимание к своим так и не взлетевшим транспортным средствам. За все время изобретатель не смог добиться значимых и видимых результатов, но как минимум с 1997 года регулярно привлекает к себе внимание финансовых служб и контролирующих органов.

25. Вначале Моллера уличили в выпуске маркетинговых материалов, в которых он сообщал о том, что его автомобили будущего заполнят воздушное пространство в течение нескольких лет. Затем сомнения вызвали операции с ценными бумагами и возможный обман инвесторов, в результате чего желающих вкладывать деньги в бездонный проект становилось все меньше. Последнюю попытку канадец предпринял в конце 2013 года, но к январю 2014-го собрал менее 30 тыс. долларов из требуемых 950 тыс.

26. Если верить дизайнеру, в настоящее время идет разработка модели M400X Skycar. Автомобиль, предназначенный для перевозки одного человека (водителя), на бумаге способен развивать скорость до 530 км/ч и взлетать на высоту 10 тыс. метров. В реальности же идея, скорее всего, так и останется идеей, а работа всей жизни Пола Моллера, которому в этом году исполнится 78 лет, завершится ничем.

Летающий мотоцикл G2

27. В перспективе он обязательно полетит - об этом свидетельствуют испытания первой модели, проведенные в 2005-2006 годах. Пока же аппарат, который успел завоевать звание «самого быстрого в мире летающего мотоцикла», подойдет Безумному Максу, Бэтмену или агенту 007.

28. Благодаря двигателю от Suzuki GSX-R1000, транспортное средство способно развивать скорость более 200 км/ч, что доказано во время заездов по соляной пустыне в США. Способность покорять небо, по словам разработчика, летающий мотоцикл получит в ближайшие месяцы.

29. В качестве основы для летательного аппарата изобретатель не зря выбрал именно байк: по американскому законодательству его будет значительно легче зарегистрировать и использовать на дорогах.

30. Сейчас Дежё Молнар работает над тем, чтобы снизить вес G2 и приспособить двигатель, приводящий мотоцикл в движение, для взаимодействия с винтом. Именно тогда инженер и опубликует видео, на котором продемонстрирует все возможности создаваемого им транспортного средства.

Аппарат содержит дискообразный корпус 1, который имеет вертикальные шахты 6 с воздушными винтами 5 и струйными рулями 10 и кабину 12 пилота. По контуру корпуса 1 установлен с возможностью вращения пневмотор 7. Тяга, создаваемая винтами 5, поднимает аппарат вверх, а струйные рули 10 обеспечивают управляемость по курсу (влево-вправо, вперед-назад). Пневмотор 7 предохраняет корпус 1 при столкновениях с препятствиями и, свободно вращаясь, не тормозит аппарат при контакте с препятствиями. Изобретение позволяет достичь высокой маневренности, повышенной грузоподъемности при малом собственном весе. 3 з.п. ф-лы, 3 ил.

Изобретение относится к летательным аппаратам индивидуального пользования с динамическим способом создания подъемной силы, вертикальным взлетом и посадкой и может быть использовано при постройке таких аппаратов. Известны разнообразные индивидуальные летательные аппараты, общими признаками которых является корпус, движители, силовая установка, кабина пилота (или место для пилота) , , , . Общим недостатком известных устройств является плохой обзор из кабины пилота нижней полусферы и отсутствие устройств, предотвращающих разрушение аппарата при задевании за препятствие, например за ствол дерева или каменный выступ. Наиболее близким по технической сущности к заявляемому изобретению является индивидуальный летательный аппарат, содержащий дискообразный корпус с кольцевым обтекателем, с силовой установкой и движителями, установленными в вертикальных шахтах корпуса, и кабиной пилота . Основными недостатками известных устройств является отсутствие обзора из кабины нижней полусферы, особенно ухудшающегося с увеличением высоты полета, и отсутствие устройств, предотвращающих нарушение целостности конструкции и нарушение в связи с этим ее работоспособности при непреднамеренном или намеренном задевании за ствол дерева, столб, каменный выступ при выполнении, например, спасательных работ в лесу, горных ущельях, на линиях высоковольтных электропередач и т.п. Задача изобретения заключается в том, чтобы создать летательный аппарат для выполнения поисковых и спасательных работ в условиях, когда природными объектами ухудшен обзор земной поверхности и когда велика возможность задевания корпусом аппарата за эти природные объекты, например, при выполнении поисковых и спасательных работ в горных ущельях, лесных массивах, а также для выполнения различных работ на линиях высоковольтных передач, высотных зданиях и различного рода высотных сооружениях. Для достижения этого необходимо, чтобы аппарат обеспечивал пилоту обзор местности буквально "под ногами" и при случайном задевании препятствия корпусом не происходило даже частичного местного смятия его конструкции, которое может привести, например, к разрушению движителя или его приводных органов. Кроме этого, должна быть обеспечена безопасность спасаемого, не обладающего зачастую ясным сознанием (тонущий, "висящий" на вершине скалы долгое время и т.п.), чтобы вращающиеся движители не могли привести к травмированию спасаемого. Наряду с этими требованиями должна быть обеспечена большая грузоподъемность при минимальном весе аппарата и минимальной мощности силовой установки, должна быть обеспечена также возможность вертикального взлета и посадки и высокая маневренность. Задача решается тем, что в индивидуальном летательном аппарате, содержащем дискообразный корпус с кольцевым обтекателем, силовую установку, движители, установленные в вертикальных шахтах корпуса, и кабину пилота, кольцевой обтекатель выполнен упругим и установлен с возможностью вращения относительно вертикальной оси аппарата, а кабина выполнена в виде отдельного модуля и установлена снизу корпуса. При этом кольцевой обтекатель может быть выполнен в виде пневмотора; с возможностью соединения с валом силовой установки; выполнен в виде установленных один над другим пневмоторов, один из которых имеет вынос с одного борта корпуса, а второй с другого. Сущность изобретения поясняется чертежами, где на фиг. 1 изображен аппарат в разрезе, на фиг. 2 - вид аппарата в плане, на фиг. 3 - разрез аппарата с двумя пневмоторами, вид спереди. Индивидуальный летательный аппарат содержит (фиг. 1) корпус 1, в котором установлена силовая установка 2 с радиатором 3 жидкостного охлаждения, продуваемая воздухом, полость которого соединена каналом 4 с кабиной пилота, движители 5 в виде воздушных винтов (винтовентиляторов или воздушных турбин), которые установлены в вертикальных шахтах 6 корпуса и приводами соединены с валом силовой установки. По наружному кольцевому контуру корпуса 1 установлен кольцевой упругий обтекатель 7, выполненный, например, в виде пневмотора, при этом может быть установлен второй пневмотор 8 (фиг. 2, 3), расположенный над первым. Пневмотор 7 (фиг. 1) установлен на корпусе 1 в ориентирующем канале 9 посредством, например, катков (не показаны), позволяющих пневмотору 7 поворачиваться вокруг вертикальной оси. В выходных (нижних) отверстиях шахт 6 движителей 5 установлены струйные рули 10, выполненные в виде поворотных лопаток, а входные (верхние) отверстия шахт 6 могут закрываться предохранительными защитными сетками 11. Пневмотор 7 может свободно поворачиваться вокруг вертикальной оси аппарата или соединяться посредством приводного механизма (не показан) с валом силовой установки 2 для принудительного его вращения. Приводной механизм обеспечивает вращение пневмотора 7 по часовой стрелке или против часовой стрелки. На нижней поверхности корпуса 1 установлена кабина 12 пилота, выполненная в виде обтекаемого тела в вертикальном и горизонтальном направлениях. На нижней части кабины 12 установлены упругие стойки 13 шасси с пневмоопорами 14. Пневмоторы 7, 8 (фиг. 3) посредством приводных механизмов (не показаны) могут соединяться с валом силовой установки 2 для принудительного их вращения, причем пневмотор 7, имеющий вынос с левого борта, имеет вращение против часовой стрелки, а пневмотор 8, имеющий вынос с правого борта, - по часовой стрелке. Кабина 12 имеет остекление 15 и 16 для обеспечения обзора нижней полусферы спереди и сзади. Рукоятка 17 соединена со струйными рулями 10, а рукоятка 18 с дроссельной заслонкой силовой установки. Работает аппарат следующим образом. Для выполнения вертикального взлета необходимо запустить силовую установку 2, прогреть ее на оборотах малого газа и перемещением рукоятки 18 увеличить обороты силовой установки 2 и соответственно движителей 5 до такой величины, чтобы тяга, создаваемая движителями, превысила вес аппарата, при этом рукоятка 17 управления струйными рулями 10 должна быть установлена в нейтральном положении, что обеспечивает вертикальное положение лопаток струйных рулей 10. После набора заданной высоты рукоятку 17 перемещают вперед, если необходимо обеспечить перемещение аппарата вперед, или назад, если необходимо обеспечить перемещение аппарата назад, или наклоняют вправо или влево, если требуется разворот аппарата вправо или влево соответственно. Перемещение рукоятки 17 вперед приводит к отклонению поворотных лопаток струйных рулей 10 назад, при этом потоки воздуха от движителей 5 отклоняются назад, а аппарат перемещается вперед. После набора заданной скорости рукоятку 18 устанавливают в такое положение, когда аппарат не изменяет высоту полета. При перемещении рукоятки 17 назад или наклоне ее вправо или влево происходят процессы, описанные выше, и аппарат перемещается назад или поворачивается вправо или влево соответственно. Для совершения посадки в заданном месте рукоятку 18 перемещают в направлении уменьшения оборотов силовой установки 2 и соответственно движителей 5, вес аппарата начинает превышать тягу движителей 5, аппарат снижается и совершает посадку. Для предотвращения сноса аппарата при полете с боковым ветром соединяют пневмотор 7 с валом силовой установки 2. При боковом ветре, например, справа пневмотор 7 должен вращаться против часовой стрелки при взгляде сверху. При этом в соответствии с эффектом Магнуса на переднем конце пневмотора 7 направление вращения совпадает с направлением ветра и происходит уменьшение давления воздуха на пневмотор, на заднем конце пневмотора направление вращения противоположно направлению потока ветра и происходит повышение давления воздуха на пневмотор, т.е. на аппарат в целом действует дополнительная подталкивающая его вперед сила. При ветре слева вращение пневмотора 7 осуществляют по часовой стрелке, происходят описанные выше процессы и также происходит подталкивание аппарата вперед. В ситуации, когда аппарат перемещается в воздухе на небольшом удалении от поверхности земли в условиях, когда присутствует много препятствий, например стволов деревьев, происходят скользящие сталкивания деревьев, при этом, во-первых, пневмотор предохраняет от смятия металлических (композитных) конструкций и, во-вторых, он проворачивается вокруг вертикальной оси и резкого торможения и остановки аппарата не происходит. Аналогичная ситуация может возникнуть и при выполнении, например, спасательных операций в узких горных ущельях или у отвесной скалы и т.п. Когда на аппарате установлено два пневмотора 7 и 8 (или два тороподобных упругих элемента), то при прохождении между двумя близко расположенными препятствиями аппарат, задевая эти препятствия, продолжает устойчивый полет, т. к. пневмоторы имеют выносы с бортов, причем об одно препятствие касается один пневмотор, а о другое - второй, поворачиваясь в разные стороны, они не тормозят аппарат. При полете в свободном пространстве пневмоторы могут быть соединены с валом силовой установки и в этом случае, вращаясь в разные стороны, они как бы разрезают встречный воздушный поток, расталкивая его в стороны, и уменьшают сопротивление среды движению корпуса 1 вперед. Вращение движителей 5 осуществляется в разные стороны (показано на фиг. 2 стрелками), что компенсирует реакции от вращения движителей 5 на корпус 1 и вращения корпуса 1 вокруг своей оси не происходит. Создание индивидуального летательного аппарата согласно заявляемому изобретению позволит получить ряд существенных преимуществ. Расположение кабины пилота под корпусом с движителями позволит значительно улучшить обзор нижней полусферы по сравнению с известными устройствами подобного типа, причем хороший обзор обеспечивается независимо от высоты полета. Выполнение кабины пилота в виде отдельного модуля и расположение ее под корпусом с движителями и силовой установкой при применении упругой подвески исключит передачу вибрации и шума от движителей и силовой установки на кабину, в результате чего повышается комфортность. Увеличение высоты расположения корпуса с движителями над поверхностью земли уменьшит пылеобразование от воздушных потоков, создаваемых движителями, и улучшается устойчивость аппарата в полете. Применение в качестве кольцевого обтекателя корпуса пневмотора (пневмоторов) обеспечит безаварийность аппарата при ударе о препятствие, причем подбором величины давления в пневмоторе обеспечивается безаварийность при столкновении при различных скоростях сталкивания. Возможность беспрепятственного проворачивания пневмотора вокруг вертикальной оси позволит избежать резких торможений аппарата при скользящих боковых ударах о препятствие. Принудительное вращение пневмотора (пневмоторов) обеспечит уменьшение сопротивления движению при боковом или встречном ветре. Выполнение кабины пилота в виде отдельного модуля позволит обеспечить быстроразъемное ее соединение (разъединение) с корпусом движителей, что облегчает транспортировку аппарата к месту использования, и уменьшается потребный объем помещения для хранения аппарата. Источники информации: 1. Журнал "Техника молодежи" N 8, 1963 г., стр. 14 - 15. 2. Журнал "Техника молодежи" N 6, 1956 г., стр. 23. 3. Журнал "Крылья родины", N 2, 1957 г., стр. 22, рис. 12. 4. Журнал "Техника молодежи" N 7, 1971 г., стр. 1. 5. Журнал "Юный техник" N 4, 1989 г., стр. 16 (прототип).

Формула изобретения

1. Индивидуальный летательный аппарат, содержащий дискообразный корпус с кольцевым обтекателем, силовую установку, движители, установленные в вертикальных шахтах корпуса, кабину пилота, отличающийся тем, что кольцевой обтекатель выполнен упругим и установлен с возможностью вращения относительно вертикальной оси аппарата, а кабина пилота выполнена в виде отдельного модуля и установлена снизу корпуса. 2. Индивидуальный летательный аппарат по п.1, отличающийся тем, что кольцевой обтекатель выполнен в виде пневмотора. 3. Индивидуальный летательный аппарат по пп.1 и 2, отличающийся тем, что кольцевой обтекатель установлен с возможностью соединения с валом силовой установки. 4. Индивидуальный летательный аппарат по пп.1, 3, отличающийся тем, что кольцевой обтекатель выполнен в виде установленных один над другим пневмоторов, один из которых имеет вынос с одного борта корпуса, а второй - с другого.

Человек неудержимо стремится в воздух. Общественный транспорт – самолёты и вертолёты – людей уже не устраивает...

Каждому хочется владеть собственным летательным аппаратом, который позволит не привязываться к расписанию авиарейсов и не простаивать часами в пробках.

Таким транспортным средством может стать трикоптер Flike.



Flike: отрываясь от земли.

Венгерские изобретатели из компании Bay Zoltan Nonprofit Ltd, занимающейся разработкой дронов и индивидуальных летательных аппаратов, наконец, представили первый действующий прототип своего трикоптера. Называется инновационный летательный аппарат – Flike. Пока трикоптер может не очень много, однако начало – воодушевляет.



Летательное устройство, работающее на бензиновом двигателе V8.

Устройство работает на бензиновом двигателе V8. Запаса топлива хватает, при нынешнем его уровне потребления, на 15-20 минут полета.

Впрочем, пока Flike не может совершить полноценный полет. На последних испытания трикоптер удалось поднять в воздух и оторвать от земли на 5 метров.

При этом транспорт просто завис над землей. Осуществлять горизонтальный полет команда инженеров из Bay Zoltan Nonprofit Ltd пока не решилась, ведь устройство находиться в стадии разработки.



Flike: вертикальный взлет и посадку.

Завершить работы над первой функциональной моделью Flike разработчики обещают уже в 2016 году. До этого времени, транспорт планируется пересадить с бензинового мотора на электрический, питающийся от аккумуляторов.

Ожидается, что это позволит сделать Flike не столько чище, сколько экономичнее и безопаснее. Рассчитан трикоптер всего на одного пилота.

О скорости его движения пока, к сожалению, ничего не известно. Транспорт имеет возможность совершать вертикальный взлет и посадку.